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Fig. 1: Logo for cayenne
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CHAPTER 1

Introduction

cayenne is a Python package for stochastic simulations. It offers a simple API to define models, perform stochastic
simulations with them and visualize the results in a convenient manner.

Currently under active development in the develop branch.
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CHAPTER 2

Install

Install with pip:

$ pip install cayenne
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CHAPTER 3

Documentation

• General: https://cayenne.readthedocs.io.

• Benchmark repository, comparing cayenne with other stochastic simulation packages: https://github.com/
Heuro-labs/cayenne-benchmarks
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CHAPTER 4

Usage

A short summary follows, but a more detailed tutorial can be found here. You can define a model as a Python string
(or a text file, see docs). The format of this string is loosely based on the excellent antimony library, which is used
behind the scenes by cayenne.

from cayenne.simulation import Simulation
model_str = """

const compartment comp1;
comp1 = 1.0; # volume of compartment

r1: A => B; k1;
r2: B => C; k2;

k1 = 0.11;
k2 = 0.1;
chem_flag = false;

A = 100;
B = 0;
C = 0;

"""
sim = Simulation.load_model(model_str, "ModelString")
# Run the simulation
sim.simulate(max_t=40, max_iter=1000, n_rep=10)
sim.plot()

4.1 Change simulation algorithm

You can change the algorithm used to perform the simulation by changing the algorithm parameter (one of
"direct", "tau_leaping" or "tau_adaptive")

sim.simulate(max_t=150, max_iter=1000, n_rep=10, algorithm="tau_leaping")
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Fig. 1: Plot of species A, B and C
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Our benchmarks are summarized below, and show direct to be a good starting point. tau_leaping offers greater
speed but needs specification and tuning of the tau hyperparameter. The tau_adaptive is less accurate and a work
in progress.

4.2 Run simulations in parallel

You can run the simulations on multiple cores by specifying the n_procs parameter

sim.simulate(max_t=150, max_iter=1000, n_rep=10, n_procs=4)

4.3 Accessing simulation results

You can access all the results or the results for a specific list of species

# Get all the results
results = sim.results
# Get results only for one or more species
results.get_species(["A", "C"])

You can also access the final states of all the simulation runs by

# Get results at the simulation endpoints
final_times, final_states = results.final

Additionally, you can access the state a particular time point of interest 𝑡. cayenne will interpolate the value from
nearby time points to give an accurate estimate.

# Get results at timepoint "t"
t = 10.0
states = results.get_state(t) # returns a list of numpy arrays

Benchmarks

direct tau_leaping tau_adaptive
cayenne :he avy_check_mark:

Most accurate yet
:he avy_check_mark:
Very fast but may need
manual tuning

Less accurate than Gille-
spieSSA’s version

Tellurium
exclamation

Inaccurate for 2nd order

N/A N/A

GillespieSSA Very slow
exclamation

Inaccurate for initial zero
counts

exclamation

Inaccurate for initial zero
counts

BioSimulator.jl
exclamation

Inaccurate interpolation

exclamation

Inaccurate for initial zero
counts

exclamation

Inaccurate for initial zero
counts

4.2. Run simulations in parallel 11
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CHAPTER 5

License

Copyright (c) 2018-2020, Dileep Kishore, Srikiran Chandrasekaran. Released under: Apache Software License 2.0
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CHAPTER 6

Credits

• Cython

• antimony

• pytest

• Cookiecutter

• audreyr/cookiecutter-pypackage

• black

6.1 Tutorial

6.1.1 Model Building

Consider a simple system of chemical reactions given by:

𝐴
𝑘1−→ 𝐵

𝐵
𝑘2−→ 𝐶

Suppose k0.11 = 1, k0.1 = 1 and there are initially 100 units of A. Then we have the following model string

>>> model_str = """
const compartment comp1;
comp1 = 1.0; # volume of compartment

r1: A => B; k1; # differs from antimony
r2: B => C; k2; # differs from antimony

k1 = 0.11;
k2 = 0.1;
chem_flag = false;

(continues on next page)
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(continued from previous page)

A = 100;
B = 0;
C = 0;

"""

The format of the model string is based on the antimony modeling language, but with one key difference. Antimony
allows the user to specify custom rate equations for each reaction. cayenne automagically generates the rate equa-
tions behind the scenes, and user need only supply the rate constants. The format is discussed below:

Model format

const compartment comp1;

This defines the compartment in which the reactions happen.:

comp1 = 1.0;

This defines the volume of the compartment in which reactions happen. For zero and first order reactions, this number
does not matter. For second and third order reactions, varying compartment volume will affect the kinetic outcomes
even when the rest of the model is not changed. A blank line after this separates these definitions from the reactions.:

r1: A => B; k1; # differs from antimony
r2: B => C; k2; # differs from antimony

Here r1 and r2 refer to the names of the reactions. This is followed by a colon and the reactants in that reaction. In r1
there is only one reactant, A. Additional reactants or stoichiometries can be written like A + 2B. This is followed by
a => which separates reactants and products. Products are written in a fashion similar to the reactants. A semi-colon
indicates the end of the products. This is followed by a symbol depicting the rate constant e.g. k1, and the reaction
ends with a second semi-colon. A blank line after this separates these reactions from rate-constant assignments.:

k1 = 0.11;
k2 = 0.1;

The rate constants are assigned one per line, with each line ending in a semi-colon. Every rate con-
stant defined in the reactions must be assigned a numerical value at this stage, or cayenne will throw a
cayenne.model_io.RateConstantError.:

chem_flag = false;

An additional element that is included at this stage is the chem_flag boolean variable. This is discussed more in
detail in the documentation of cayenne.Simulation class under the notes section. Briefly, if

1. the system under consideration is a chemical system and the supplied rate constants are in units of molarity or
M or mol/L, chem_flag should be set to true

2. the system under consideration is a biological system and the supplied rate constants are in units of copies/L or
CFU/L, chem_flag should be set to false

A blank line after this separates rate constants from initial values for the species.:

A = 100;
B = 0;
C = 0;

16 Chapter 6. Credits
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The initial values for species are assigned one per line, with each line ending in a semi-colon. Every species
defined in the reactions must be assigned an integer initial value at this stage, or cayenne will throw a
cayenne.model_io.InitialStateError.

Note: cayenne only accepts zero, first, second and third order reactions. We decided to not allow custom rate
equations for stochastic simulations for two reasons:

1. A custom rate equation, such as the Monod equation (see here for background) equation below, may violate
the assumptions of stochastic simulations. These assumptions include a well stirred chamber with molecules in
Brownian motion, among others.

𝜇 =
𝜇𝑚𝑎𝑥𝑆

𝐾𝑆 + 𝑆

2. An equation resembling the Monod equation, the Michaelis-Menten equation, is grounded chemical kinetic
theory. Yet the rate expression (see below) does not fall under 0-3 order reactions supported by cayenne.
However, the elementary reactions that make up the Michaelis-Menten kinetics are first and second order in na-
ture. These elementary reactions can easily be modeled with cayenne, but with the specification of additional
constants (see examples). A study shows that using the rate expression of Michaelis-Menten kinetics is valid
under some conditions.

𝑑𝑃

𝑑𝑡
=

𝜇𝑚𝑎𝑥𝑆

𝐾𝑆 + 𝑆

Note: The chem_flag is set to True since we are dealing with a chemical system. For defintion of chem_flag,
see the notes under the definition of the Simulation class.

These variables are passed to the Simulation class to create an object that represents the current system

>>> from cayenne import Simulation

>>> sim = Simulation.load_model(model_str, "ModelString")

class cayenne.simulation.Simulation(species_names: List[str], rxn_names: List[str], re-
act_stoic: numpy.ndarray, prod_stoic: numpy.ndarray,
init_state: numpy.ndarray, k_det: numpy.ndarray,
chem_flag: bool = False, volume: float = 1.0)

A main class for running simulations.

Parameters

• species_names (List[str]) – List of species names

• rxn_names (List[str]) – List of reaction names

• react_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients
of the reactants. Reactions are columns and species are rows.

• prod_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of
the products. Reactions are columns and species are rows.

• init_state ((ns,) ndarray) – A 1D array representing the initial state of the sys-
tem.

• k_det ((nr,) ndarray) – A 1D array representing the deterministic rate constants of
the system.

• volume (float, optional) – The volume of the reactor vessel which is important for
second and higher order reactions. Defaults to 1 arbitrary units.

6.1. Tutorial 17
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• chem_flag (bool, optional) – If True, divide by Na (Avogadro’s constant) while
calculating stochastic rate constants. Defaults to False.

results
The results instance

Type Results

Raises ValueError – If supplied with order > 3.

Examples

>>> V_r = np.array([[1,0],[0,1],[0,0]])
>>> V_p = np.array([[0,0],[1,0],[0,1]])
>>> X0 = np.array([10,0,0])
>>> k = np.array([1,1])
>>> sim = Simulation(V_r, V_p, X0, k)

Notes

Stochastic reaction rates depend on the size of the system for second and third order reactions. By this, we
mean the volume of the system in which the reactants are contained. Intuitively, this makes sense considering
that collisions between two or more molecules becomes rarer as the size of the system increases. A detailed
mathematical treatment of this idea can be found in3 .

In practice, this means that volume and chem_flag need to be supplied for second and third order reactions.
volume represents the size of the system containing the reactants.

In chemical systems chem_flag should generally be set to True as k_det is specified in units of molarity
or M or mol/L. For example, a second order rate constant could be = 0.15 mol / (L s). Then Avogadro’s constant
(𝑁𝑎) is used for normalization while computing k_stoc (𝑐𝜇 in3 ) from k_det.

In biological systems, chem_flag should be generally be set to False as k_det is specified in units of
copies/L or CFU/L. For example, a second order rate constant could be = 0.15 CFU / (L s).

References

6.1.2 Running Simulations

Suppose we want to run 10 repetitions of the system for at most 1000 steps / 40 time units each, we can use the
simulate method to do this.

>>> sim.simulate(max_t=40, max_iter=1000, n_rep=10)

Simulation.simulate(max_t: float = 10.0, max_iter: int = 1000, seed: int = 0, n_rep: int = 1, n_procs:
Optional[int] = 1, algorithm: str = ’direct’, debug: bool = False, **kwargs)→
None

Run the simulation

Parameters

• max_t (float, optional) – The end time of the simulation. The default is 10.0.
3 Gillespie, D.T., 1976. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput.

Phys. 22, 403–434. doi:10.1016/0021-9991(76)90041-3.
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• max_iter (int, optional) – The maximum number of iterations of the simulation
loop. The default is 1000 iterations.

• seed (int, optional) – The seed used to generate simulation seeds. The default value
is 0.

• n_rep (int, optional) – The number of repetitions of the simulation required. The
default value is 1.

• n_procs (int, optional) – The number of cpu cores to use for the simulation. Use
None to automatically detect number of cpu cores. The default value is 1.

• algorithm (str, optional) – The algorithm to be used to run the simulation. The
default value is "direct".

Notes

The status indicates the status of the simulation at exit. Each repetition will have a status associated with it, and
these are accessible through the Simulation.results.status_list.

status: int Indicates the status of the simulation at exit.

1: Succesful completion, terminated when max_iter iterations reached.

2: Succesful completion, terminated when max_t crossed.

3: Succesful completion, terminated when all species went extinct.

-1: Failure, order greater than 3 detected.

-2: Failure, propensity zero without extinction.

6.1.3 Plotting

To plot the results on the screen, we can simply plot all species concentrations at all the time-points using:

>>> sim.plot()

6.1. Tutorial 19
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A subset of the species can be plotted along with custom display names by supplying additional arguments to
Simulation.plot as follows:

>>> sim.plot(species_names = ["A", "C"], new_names = ["Starting material", "Product"])

By default, calling the plot object returns the matplotlib figure and axis objects. To display the plot, we just do:

>>> sim.plot()
>>> import matplotlib.pyplot as plt
>>> plt.show()

Instead to save the figure directly to a file, we do:

20 Chapter 6. Credits
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>>> sim.plot()
>>> import matplotlib.pyplot as plt
>>> plt.savefig("plot.png")

Simulation.plot(species_names: list = None, new_names: list = None)
Plot the simulation

Parameters

• species_names (list, optional) – The names of the species to be plotted (list
of str). The default is None and plots all species.

• new_names (list, optional) – The names of the species to be plotted. The default
is "xi" for species i.

Returns

• fig (class ‘matplotlib.figure.Figure’) – Figure object of the generated plot.

• ax (class ‘matplotlib.axes._subplots.AxesSubplot) – Axis objected of the generated plot.

Note:

1. The sim.plot method needs to be run after running sim.simulate

2. More detailed plots can be created manually by accessing the sim.results object

6.1.4 Accessing the results

The results of the simulation can be retrieved by accessing the Results object as

>>> results = sim.results
>>> results
<Results species=('A', 'B', 'C') n_rep=10algorithm=direct sim_seeds=[8325804

→˓1484405 2215104 5157699 8222403 7644169 5853461 6739698 374564
2832983]>

The Results object provides abstractions for easy retrieval and iteration over the simulation results. For example
you can iterate over every run of the simulation using

>>> for x, t, status in results:
... pass

You can access the results of the n th run by

>>> nth_result = results[n]

You can also access the final states of all the simulation runs by

>>> final_times, final_states = results.final

# final times of each repetition
>>> final_times
array([6.23502469, 7.67449057, 6.15181435, 8.95810706, 7.12055223,

7.06535004, 6.07045973, 7.67547689, 9.4218006 , 9.00615099])

# final states of each repetition

(continues on next page)

6.1. Tutorial 21
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(continued from previous page)

>>> final_states
array([[ 0, 0, 100],

[ 0, 0, 100],
[ 0, 0, 100],
[ 0, 0, 100],
[ 0, 0, 100],
[ 0, 0, 100],
[ 0, 0, 100],
[ 0, 0, 100],
[ 0, 0, 100],
[ 0, 0, 100]])

You can obtain the state of the system at a particular time using the get_state method. For example to get the state
of the system at time t=5.0 for each repetition:

>>> results.get_state(5.0)
[array([ 1, 4, 95]),
array([ 1, 2, 97]),
array([ 0, 2, 98]),
array([ 3, 4, 93]),
array([ 0, 3, 97]),
array([ 0, 2, 98]),
array([ 1, 1, 98]),
array([ 0, 4, 96]),
array([ 1, 6, 93]),
array([ 1, 3, 96])]

Additionally, you can also access a particular species’ trajectory through time across all simulations with the
get_species function as follows:

>>> results.get_species(["A", "C"])

This will return a list with a numpy array for each repetition. We use a list here instead of higher dimensional ndarray
for the following reason: any two repetitions of a stochastic simulation need not return the same number of time steps.

class cayenne.results.Results(species_names: List[str], rxn_names: List[str], t_list:
List[numpy.ndarray], x_list: List[numpy.ndarray], status_list:
List[int], algorithm: str, sim_seeds: List[int])

A class that stores simulation results and provides methods to access them

Parameters

• species_names (List[str]) – List of species names

• rxn_names (List[str]) – List of reaction names

• t_list (List[float]) – List of time points for each repetition

• x_list (List[np.ndarray]) – List of system states for each repetition

• status_list (List[int]) – List of return status for each repetition

• algorithm (str) – Algorithm used to run the simulation

• sim_seeds (List[int]) – List of seeds used for the simulation

22 Chapter 6. Credits
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Notes

The status indicates the status of the simulation at exit. Each repetition will have a status associated with it, and
these are accessible through the status_list.

1: Succesful completion, terminated when max_iter iterations reached.

2: Succesful completion, terminated when max_t crossed.

3: Succesful completion, terminated when all species went extinct.

-1: Failure, order greater than 3 detected.

-2: Failure, propensity zero without extinction.

Results.__iter__() Iterate over each repetition
Results.__len__() Return number of repetitions in simulation
Results.__contains__(ind) Returns True if ind is one of the repetition numbers
Results.__getitem__(ind) Return sim.
Results.final Returns the final times and states of the system in the

simulations
Results.get_state(t) Returns the states of the system at time point t.

6.1.5 Algorithms

The Simulation class currently supports the following algorithms (see Algorithms):

1. Gillespie’s direct method

2. Tau leaping method method

3. Adaptive tau leaping method (experimental)

You can change the algorithm used to perform a simulation using the algorithm argument

>>> sim.simulate(max_t=150, max_iter=1000, n_rep=10, algorithm="tau_leaping")

6.2 Algorithms

cayenne currently has 3 algorithms:

1. Gillespie’s direct method (direct) (accurate, may be slow)

2. Tau leaping method (tau_leaping) (approximate, faster, needs to be tuned)

3. Adaptive tau leaping method (experimental, tau_adaptive) (approximate, faster, largely self-tuning)

Methods are described more in depth below.

6.2.1 Gillespie’s direct method (direct)

Implementation of Gillespie’s Direct method. This is an exact simulation algorithm that simulates each reaction step.
This makes it slower than other methods, but it’s a good place to start.

6.2. Algorithms 23
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class cayenne.algorithms.direct
Runs the Direct Stochastic Simulation Algorithm1

Parameters

• react_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients
of the reactants. Reactions are columns and species are rows.

• prod_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of
the products. Reactions are columns and species are rows.

• init_state ((ns,) ndarray) – A 1D array representing the initial state of the sys-
tem.

• k_det ((nr,) ndarray) – A 1D array representing the deterministic rate constants of
the system.

• max_t (float) – The maximum simulation time to run the simulation for.

• max_iter (int) – The maximum number of iterations to run the simulation for.

• volume (float) – The volume of the reactor vessel which is important for second and
higher order reactions. Defaults to 1 arbitrary units.

• seed (int) – The seed for the numpy random generator used for the current run of the
algorithm.

• chem_flag (bool) – If True, divide by Na (Avogadro’s constant) while calculating
stochastic rate constants. Defaults to False.

Returns

• t (ndarray) – Numpy array of the times.

• x (ndarray) – Numpy array of the states of the system at times in in t.

• status (int) – Indicates the status of the simulation at exit.

1 - Succesful completion, terminated when max_iter iterations reached.

2 - Succesful completion, terminated when max_t crossed.

3 - Succesful completion, terminated when all species went extinct.

-1 - Failure, order greater than 3 detected.

-2 - Failure, propensity zero without extinction.

References

6.2.2 Tau leaping method (tau_leaping)

Implementation of the tau leaping algorithm. This is an approximate method that needs to be tuned to the system
at hand (by modifying the time step or the tau parameter). A default tau=0.1 is assumed by cayenne. This
algorithm is approximate and faster than the Direct algorithm, but it must be used with caution. Smaller time steps
make the simulation more accurate, but increase the code run time. Larger time steps makes the simulations less
accurate and speeds up code run time.

class cayenne.algorithms.tau_leaping
Runs the Tau Leaping Simulation Algorithm. Exits if negative population encountered.

1 Gillespie, D.T., 1976. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput.
Phys. 22, 403–434. doi:10.1016/0021-9991(76)90041-3.
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Parameters

• react_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients
of the reactants. Reactions are columns and species are rows.

• prod_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of
the products. Reactions are columns and species are rows.

• init_state ((ns,) ndarray) – A 1D array representing the initial state of the sys-
tem.

• k_det ((nr,) ndarray) – A 1D array representing the deterministic rate constants of
the system.

• tau (float) – The constant time step used to tau leaping.

• max_t (float) – The maximum simulation time to run the simulation for.

• volume (float) – The volume of the reactor vessel which is important for second and
higher order reactions. Defaults to 1 arbitrary units.

• seed (int) – The seed for the numpy random generator used for the current run of the
algorithm.

• chem_flag (bool) – If True, divide by Na (Avogadro’s constant) while calculating
stochastic rate constants. Defaults to False.

Returns

• t (ndarray) – Numpy array of the times.

• x (ndarray) – Numpy array of the states of the system at times in in t.

• status (int) – Indicates the status of the simulation at exit.

1: Succesful completion, terminated when max_iter iterations reached.

2: Succesful completion, terminated when max_t crossed.

3: Succesful completion, terminated when all species went extinct.

-1: Failure, order greater than 3 detected.

-2: Failure, propensity zero without extinction.

-3: Negative species count encountered.

6.2.3 Adaptive tau leaping method (experimental, tau_adaptive)

Experimental implementation of the tau adaptive algorithm. This is an approximate method that builds off the
tau_leaping method. It self-adapts the value of tau over the course of the simulation. For sytems with a small
number of molecules, it will be similar in speed to the direct method. For systems with a large number of molecules,
it will be much faster than the direct method.

class cayenne.algorithms.tau_adaptive
Runs the adaptive tau leaping simulation algorithm2

Parameters

• react_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients
of the reactants. Reactions are columns and species are rows.

2 Cao, Y., Gillespie, D.T., Petzold, L.R., 2006. Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys. 124, 044109.
doi:10.1063/1.2159468

6.2. Algorithms 25
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• prod_stoic ((ns, nr) ndarray) – A 2D array of the stoichiometric coefficients of
the products. Reactions are columns and species are rows.

• init_state ((ns,) ndarray) – A 1D array representing the initial state of the sys-
tem.

• k_det ((nr,) ndarray) – A 1D array representing the deterministic rate constants of
the system.

• hor – A 1D array of the highest order reaction in which each species appears.

• nc (int) – The criticality threshold. Reactions with that cannot fire more than nc times are
deemed critical.

• epsilon (float) – The epsilon used in tau-leaping, measure of the bound on relative
change in propensity.

• max_t (float) – The maximum simulation time to run the simulation for.

• max_iter (int) – The maximum number of iterations to run the simulation for.

• volume (float) – The volume of the reactor vessel which is important for second and
higher order reactions. Defaults to 1 arbitrary units.

• seed (int) – The seed for the numpy random generator used for the current run of the
algorithm.

• chem_flag (bool) – If True, divide by Na (Avogadro’s constant) while calculating
stochastic rate constants. Defaults to False.

Returns

• t (ndarray) – Numpy array of the times.

• x (ndarray) – Numpy array of the states of the system at times in in t.

• status (int) – Indicates the status of the simulation at exit.

1 - Succesful completion, terminated when max_iter iterations reached.

2 - Succesful completion, terminated when max_t crossed.

3 - Succesful completion, terminated when all species went extinct.

-1 - Failure, order greater than 3 detected.

-2 - Failure, propensity zero without extinction.

-3 - Negative species count encountered

References

6.3 Examples

Here we discuss some example systems and how to code them up using cayenne.
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6.3.1 Zero order system

𝜑
𝑘1−→ 𝐴

𝑘1 = 1.1

𝐴(𝑡 = 0) = 100

This can be coded up with:

>>> from cayenne import Simulation
>>> model_str = """

const compartment comp1;
comp1 = 1.0; # volume of compartment

r1: => A; k1;

k1 = 1.1;
chem_flag = false;

A = 100;
"""

>>> sim = Simulation.load_model(model_str, "ModelString")
>>> sim.simulate()
>>> sim.plot()

6.3. Examples 27



Stochastic Simulation Algorithms in Python Documentation, Release 0.9.1

6.3.2 First order system

𝐴
𝑘1−→ 𝐵

𝑘1 = 1.1

𝐴(𝑡 = 0) = 100

𝐵(𝑡 = 0) = 20

This can be coded up with:

>>> from cayenne import Simulation
>>> model_str = """

const compartment comp1;
comp1 = 1.0; # volume of compartment

r1: A => B; k1;

k1 = 1.1;
chem_flag = false;

A = 100;
B = 20;

"""
>>> sim = Simulation.load_model(model_str, "ModelString")
>>> sim.simulate()
>>> sim.plot()

Suppose you want to use the tau_leaping algorithm, run 20 repetitions and plot only species 𝐵. Then do:

>>> sim.simulate(algorithm="tau_leaping", n_rep=20)
>>> sim.plot(species_names=["B"], new_names=["Species B"])
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6.3.3 Enzyme kinetics (second order system with multiple reactions)

Binding : 𝑆 + 𝐸
𝑘1−→ 𝑆𝐸

Dissociation : 𝑆𝐸
𝑘2−→ 𝑆 + 𝐸

Conversion : 𝑆𝐸
𝑘3−→ 𝑃 + 𝐸

𝑘1 = 0.006

𝑘2 = 0.005

𝑘3 = 0.1

𝑆(𝑡 = 0) = 200

𝐸(𝑡 = 0) = 50

𝑆𝐸(𝑡 = 0) = 0

𝑃 (𝑡 = 0) = 0

This can be coded up with:

>>> from cayenne import Simulation
>>> model_str = """

const compartment comp1;
comp1 = 1.0; # volume of compartment

binding: S + E => SE; k1;
dissociation: SE => S + E; k2;
conversion: SE => P + E; k3;

k1 = 0.006;

(continues on next page)
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(continued from previous page)

k2 = 0.005;
k3 = 0.1;
chem_flag = false;

S = 200;
E = 50;
SE = 0;
P = 0;

"""
>>> sim = Simulation.load_model(model_str, "ModelString")
>>> sim.simulate(max_t=50, n_rep=10)
>>> sim.plot()

Since this is a second order system, the size of the system affects the reaction rates. What happens in a larger system?

>>> from cayenne import Simulation
>>> model_str = """

const compartment comp1;
comp1 = 5.0; # volume of compartment

binding: S + E => SE; k1;
dissociation: SE => S + E; k2;
conversion: SE => P + E; k3;

k1 = 0.006;
k2 = 0.005;
k3 = 0.1;
chem_flag = false;

S = 200;
E = 50;

(continues on next page)
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(continued from previous page)

SE = 0;
P = 0;

"""
>>> sim = Simulation.load_model(model_str, "ModelString")
>>> sim.simulate(max_t=50, n_rep=10)
>>> sim.plot()

Here we see that the reaction proceeds slower. Less of the product is formed by t=50 compared to the previous case.

6.4 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

6.4.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/dileep-kishore/cayenne/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.
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Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

Write Documentation

Stochastic Simulation Algorithms in Python could always use more documentation, whether as part of the official
Stochastic Simulation Algorithms in Python docs, in docstrings, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/dileep-kishore/cayenne/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

6.4.2 Get Started!

Ready to contribute? Here’s how to set up cayenne for local development.

1. Fork the cayenne repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/cayenne.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv cayenne
$ cd cayenne/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 cayenne tests
$ python setup.py test or py.test
$ tox
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To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

6.4.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check https://travis-ci.org/
dileep-kishore/cayenne/pull_requests and make sure that the tests pass for all supported Python versions.

6.4.4 Tips

To run a subset of tests:

$ py.test tests.test_cayenne

6.4.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

6.5 Credits

6.5.1 Development Lead

• Dileep Kishore <k.dileep1994@gmail.com>

• Srikiran Chandrasekaran <srikiranc@gmail.com>

6.5.2 Contributors

None yet. Why not be the first?
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